Nano-Workbench: A Combined Hollow AFM Cantilever and Robotic Manipulator

نویسندگان

  • Héctor Hugo Pérez Garza
  • Murali Krishna Ghatkesar
  • Shibabrata Basak
  • Per Löthman
  • Urs Staufer
چکیده

To manipulate liquid matter at the nanometer scale, we have developed a robotic assembly equipped with a hollow atomic force microscope (AFM) cantilever that can handle femtolitre volumes of liquid. The assembly consists of four independent robots, each sugar cube sized with four degrees of freedom. All robots are placed on a single platform around the sample forming a nano-workbench (NWB). Each robot can travel the entire platform and has a minimum position resolution of 5 nm both in-plane and out-of-plane. The cantilever chip was glued to the robotic arm. Dispensing was done by the capillarity between the substrate and the cantilever tip, and was monitored visually through a microscope. To evaluate the performance of the NWB, we have performed three experiments: clamping of graphene with epoxy, mixing of femtolitre volume droplets to synthesize gold nanoparticles and accurately dispense electrolyte liquid for a nanobattery. OPEN ACCESS Micromachines 2015, 6 601

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensitivity Analysis of Coulomb and HK Friction Models in 2D AFM-Based Nano-Manipulation: Sobol Method

Nanotechnology involves the ability to see and control individual atoms and molecules which are about 100 nanometer or smaller. One of the major tools used in this field is atomic force microscopy which uses a wealth of techniques to measure the topography and investigates the surface forces in nanoscale. Friction force is the representation of the surface interaction between two surfaces an...

متن کامل

Study of the flexural sensitivity and resonant frequency of an inclined AFM cantilever with sidewall probe

The resonant frequency and sensitivity of an atomic force microscope (AFM) cantilever with assembled cantilever probe (ACP) have been analyzed and a closed-form expression for the sensitivity of vibration modes has been obtained. The proposed ACP comprises an inclined cantilever and extension, and a tip located at the free end of the extension, which makes the AFM capable of topography at sidew...

متن کامل

Study of the flexural sensitivity and resonant frequency of an inclined AFM cantilever with sidewall probe

The resonant frequency and sensitivity of an atomic force microscope (AFM) cantilever with assembled cantilever probe (ACP) have been analyzed and a closed-form expression for the sensitivity of vibration modes has been obtained. The proposed ACP comprises an inclined cantilever and extension, and a tip located at the free end of the extension, which makes the AFM capable of topography at sidew...

متن کامل

A Comprehensive Model for Stiffness Coefficients in V-Shaped Cantilevers

   During past decade the AFM based nanomanipulation has been focus of attention as the promising nano fabrication approach. The main challenge in this process is the real-time monitoring. Consequently, the dynamic models have been proposed as a solution to the existing challenge. In the modeling approach the magnitudes of the forces are proportional to the stiffness coefficients o...

متن کامل

Modeling of Air Relative Humidity Effect on Adhesion Force in Manipulation of Nano-Particles and its Application in AFM

In this paper, the effect of air relative humidity and capillary force on contact geometry of surfaces based on JKR model by Atomic force microscopy was investigated in order to manipulate nano-particles. With transition from macro to nano-scale, the effect of surface forces becomes more significant in comparison with inertial force. Because contact mechanics models are based on surface energy ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Micromachines

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015